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Supplementary Fig. 1 
a. Summary of methodology used. 

b. NMF consensus clusters for combined  core datasets - GSE13294 & GSE14333 



c. Cophenetic coefficient plots from NMF clusters for genes selected using different SD cut-offs. 

Supplementary Fig. 1, cont’d 

SD = 0.5 SD = 0.8 SD = 1 

d. Cophenetic coefficient plots from NMF clusters for genes selected using fold change greater than 2 in at least 3 
samples. 



Supplementary Fig. 1, cont’d 

e. Combined GSE13294 & GSE14333 – 3 subtypes 
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b. Enterocyte subtype-specific 
markers 

-2 

-1 

0 

1 

2 

3 MUC2 
TFF3 

M
ed

ia
n

 o
f 

m
ed

ia
n

 c
en

te
re

d
 

g
en

e 
ex

p
re

ss
io

n
 

a. Goblet subtype-specific markers 
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g. Quantitative RT-PCR assays for the identification of 
subtypes using patient CRC samples 

Supplementary Fig. 2, con’t 

Samples/
Markers MUC2 TFF3 SFRP2 RARRES3 CFTR Subtypes 

CR560671 Neg Neg Neg Neg Pos TA 

CR560974 Neg Neg Neg Neg Pos TA 

CR560973 Neg Neg Neg Neg Pos TA 

CR560603 Pos Neg Neg Neg Neg Enterocyte 

CR561060 Pos Pos Neg Neg Neg Goblet-like 

CR559521 Pos Pos Neg Neg Neg Goblet-like 

CR560367 Neg Neg Neg Pos Neg Inflammatory 

CR559251 Neg Neg Pos Neg Neg Stem-like 

CR560476 Neg Neg Pos Neg Neg Stem-like 

CR560080 Neg Neg Pos Neg Neg Stem-like 



a. Microdissected tumors (n=62, GSE12945) 

b. Microdissected tumors (n=62, GSE12945) 
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c. Exon array data (n=36, GSE16125) 

Supplementary Fig. 3, cont’d 

d. Exon array data (n=36, GSE16125) 
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e. Whole-tumor (n=101, GSE20916) 

Supplementary Fig. 3, cont’d 

f. Whole-tumor (n=101, GSE20916) 
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g. Whole-tumor (n=65, GSE20842; Agilent-014850 Whole Human Genome Microarray 4×44K) 

Supplementary Fig. 3, cont’d 

h. Whole-tumor (n=65, GSE20842; Agilent-014850 Whole Human Genome Microarray 4×44K) 
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Supplementary Fig. 3, cont’d 

i. LCM and whole tumor (n=123, GSE21510) 

j. LCM and whole tumor (n=123, GSE21510) 
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Supplementary Fig. 3, cont’d 

k. TCGA  dataset (n=220) 

l. Comparison of TCGA subtypes and CRCassigner subtype 
using TCGA samples 
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a. NMF consensus clusters for combined cell lines and core datasets 

Supplementary Fig. 4 
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b. Cell line subtypes 
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e. Stem cell marker expression d. Differentiated marker expression 
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g. DFS – treated and untreated Enterocyte samples 
(GSE14333) 
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Supplementary Fig. 5, cont’d 

i. Comparison with Microsatellite subgroups 
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a. Association of stem cell signatures with CRC subtypes 	  
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b. GSEA showing enrichment of stem cell signatures and certain pathways in stem-like subtype CRC samples 
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Supplementary Fig. 6, cont’d 

* 

c. Expression of Wnt targets in TA subtype samples 
from colon crypt top and base	  
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d. Association of BRAF-mut signature with subtypes	  
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a. NMF consensus clustering Khambata-Ford liver metastases from CRC dataset  

Supplementary Fig. 7 
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e. FLNA expression in TA cell lines 
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j. Survival curve, KRAS wild-type 
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Samples MUC2 TFF3 SFRP2 RARRES3 CFTR FLNA Subtypes 

CR560671 Neg Neg Neg Neg Pos Pos CR-TA 

CR560974 Neg Neg Neg Neg Pos Pos CR-TA 

CR560973 Neg Neg Neg Neg Pos Neg CS-TA 

m. Quantitative RT-PCR assays for the identification of subtypes 
including sub-subtypes of TA 

l. Quantitative RT-PCR assays for the identification of 
subtypes using patient CRC samples 
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Supplementary Fig. 8 

a. NMF consensus clusters for merged Del Rio (n = 21) and core CRC datasets 
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c. Combined Del Rio and core tumor datasets and subtypes 
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d. Core dataset – associated FOLFIRI response 
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Supplementary Results and Discussions 
 
Overview of CRC subtype stratification and biomarker identification. A primary 
goal of this study was to determine whether we could detect novel molecular subtypes 
of CRC based on published microarray data, and if so, to identify biomarkers to 
effectively and practically classify samples into the detected subtypes. As has been 
shown in studies of other types of cancers1-7, novel subtypes can be identified using 
unsupervised clustering methods. In order to detect multiple subtypes (some of which 
may represent relatively small fractions of the patient population), the clustering 
methods require moderately large numbers of samples – more than contained in any 
one of the individual CRC data sets published to date. With that in mind, we began our 
analysis by identifying suitable and comparable microarray data sets (Supplementary 
Table 2) and selecting only those data sets that were described in Dalerba, et. al8 as 
not having redundant samples. Once the data sets were selected, the raw gene 
expression readouts were either normalized using robust multiarray averaging (RMA)9 
or obtained as processed data from the authors (see Supplementary Table 2a) and 
then pooled using distance weighted discrimination (DWD)10 method after normalizing 
each data set to N(0,1). Consensus-based non-negative matrix factorization (NMF)11 
was applied to the pooled data to cluster the samples into the initial set of three and 
then five CRC subtypes. Although consensus-based clustering algorithms can be used 
to detect robust clusters (i.e. clusters that tolerate a moderate degree of outlier 
contamination in the training set), the identification of genes (or markers) specific to 
each cluster is somewhat more sensitive to samples representing rare subtypes or 
samples of indeterminate origin. Therefore, once the clusters (subtypes) were identified 
using NMF, we used silhouette width1,12 (similar to that used by TCGA for classifying 
glioblastoma2)  to screen out those samples residing on the periphery of the NMF-
identified clusters. From there, we applied well-established methods (Significance 
Analysis of Microarrays, SAM13; and Prediction Analysis for Microarrays, PAM14) to 
extract biomarkers associated with the screened subtypes. The summary of the 
methodology is shown in Supplementary Fig. 1a and the details of our analysis are 
described in the subsections below. 
 

1.1. Pooling data sets using DWD. When pooling microarray data, one of the 
main challenges is to pool the microarray data sets in such a way as to compensate 
for systematic biases (e.g. batch effects) without distorting or collapsing biologically 
informative and subtype-discriminating structures in the gene expression space. In 
this respect, Benito et. al10 applied a method known as DWD to pool microarray 
data and showed that DWD demonstrates superior pooling characteristics when 
compared to alternative methods such as singular value decomposition (SVD) and 
Fisher linear discrimination, especially for high-throughput gene expression data in 
which we must contend with small numbers of samples relative to the number of 
gene expression readouts (i.e. a high dimensional features space). As a variation 
on the support vector machine (SVM) approach, DWD is suitable for high 
dimensional features spaces, but it has the added benefit of minimizing the effects 
that data artifacts and outliers can have on the batch effect adjustments.  
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1.2. Unsupervised clustering using consensus-based NMF. By itself, NMF11 is a 
dimensionality reduction method in which we can attempt to capture the salient 
functional properties of a high-dimensional gene expression profile using a 
relatively small number of “metagenes” (defined to be non-negative linear 
combinations of the expression of individual genes – i.e. a weighted average of 
gene expression, with each metagene having its own set of weighting coefficients). 
As with principal component analysis, the familiar gene expression table (samples x 
genes) is factored into two lower-dimensional matrices except that for NMF the 
matrix factors are constrained to be purely non-negative values. This ‘non-
negativity’ constraint is believed to more realistically represent the nature of gene 
expression11, in that gene expression is either zero- or positive-valued. In contrast, 
principal component analysis (PCA) matrix factors can be either positive- or 
negative-valued. 
 
Given an arbitrary gene expression table (profile), it is not generally possible to 
analytically factor the table into two matrix factors. As a consequence, numerical 
algorithms have been developed15 to accomplish this by first initializing the two 
matrices to random values and then iteratively updating the matrices using a search 
algorithm. There is no guarantee that this search algorithm will converge to a 
globally optimal factorization, hence one re-runs the algorithm using multiple 
random initial conditions to see whether the algorithm provides a consistent 
factorization. At the end of the factorization algorithm, one obtains two lower-
dimensional matrices, which when multiplied together will yield an approximation to 
the original gene expression table. The metagenes correspond to functional 
properties represented in the original gene expression table and can be viewed as 
‘anchors’ for clustering the samples into subtypes. Specifically, each sample is 
assigned to a subtype by finding which metagene is most closely aligned with the 
sample’s gene expression profile. Hence each sample is assigned to one and only 
one cluster. 
 
As explained above, the robustness of clustering can be gauged by repeating the 
factorization process several times using different random initial conditions for the 
factorization algorithm. If the factorization is insensitive to the initial conditions of the 
search algorithm, then any pair of samples will tend to co-cluster irrespective of the 
initial condition. By keeping track of the pairwise co-clustering, we can graphically 
represent the clustering “consensus” by plotting the frequency with which two 
samples co-cluster. This is the basis of the consensus plots illustrated in 
Supplementary Fig. 1b, 3, where we have color-coded consensus as ranging from 
“always co-clustering” (red) to “never co-clustering” (blue), with intermediate colors 
representing “occasional” co-clustering. When there is high consensus clustering, 
the boundaries separating red from blue regions will be sharp. In this case, we see 
consistent pairwise co-clustering irrespective of the initial condition on the 
factorization algorithm. When consensus clustering is poor, the boundaries will be 
‘fuzzy’ with bands of intermediate colors separating the red and blue regions as 
shown in Supplementary Fig. 1b. Given k clusters, consensus can be 
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quantitatively summarized using a single scalar-valued function known as the 
cophenetic coefficient, ρk (defined in Brunet, et al11) which ranges in value from 0.0 
to 1.0. When the consensus clustering is sharp, ρk will be close to 1.0. When the 
consensus is blurry, ρk will be closer to 0.0. We generally seek high consensus 
clusters, i.e. those for which ρk is close to 1.0, to be confident that the chosen 
number of clusters is robustly supported by the data. When computing our NMF 
consensus plots (and associated cophenetic coefficients), we used 20 different 
initial conditions for the factorization algorithm for each value of k. For the core data 
sets, the values of k were varied from 2 to 10 hence we obtain a consensus plot 
(and cophenetic coefficient) for each k=2,…10 and seek values of k for which ρk is 
close to 1.0. 
 
In the NMF consensus analysis of the core data sets, we found good consensus for 
both k=3 and k=5 clusters, suggesting that there was evidence for 5 consensus 
clusters and hence 5 functional properties in the core data sets. 
 
1.3. Removing outliers using silhouette width. For the purposes of identifying 
subtype-specific markers, our analysis includes only those samples that belong 
statistically to the core of each of the clusters. Excluding samples with negative 
silhouette width12 has been shown to minimize the impact of sample outliers on the 
identification of subtype markers, as described in TCGA glioblastoma 
classification1. Accordingly, 58 samples from the original 445 were identified as 
having negative silhouette width and were therefore excluded from the marker 
identification phase of the analysis (Supplementary Fig. 1f). 
 
1.4. Identification of subtype-specific biomarkers using SAM and PAM. We 
used a two-step process to identify subtype-specific biomarkers. The first step 
identifies the differentially expressed genes and the second step finds those genes 
that are associated with specific subtypes. For the first step, we used SAM13 to 
identify genes significantly differentially expressed across the 5 subtypes. This is a 
well-established method that looks for large differential gene expression relative to 
the spread of expression across all genes. Sample permutation is used to estimate 
false discovery rates (FDR) associated with sets of genes identified as differentially 
expressed. By adjusting a sensitivity threshold, ΔSAM, users can control the 
estimated FDR associated with the gene sets. For our analysis, we selected ΔSAM = 
12.2, which yielded 786 differentially expressed genes and an FDR of zero 
(Supplementary Table 1a). The second step in the process was to match the 
differentially expressed genes to specific subtypes. For this step, we used PAM14, 
which is similar in nature to the centroid method recently applied by the TCGA 
consortium to glioblastoma data1, except that PAM eliminates the contribution of 
genes that differentially express below a specific threshold, ΔPAM, relative to the 
subtype-specific centroids. A threshold parameter or scale of ΔPAM = 2 was chosen 
after evaluating various ΔPAM values and misclassification errors. Leave out cross 
validation (LOCV) analysis was then performed to identify a set of genes that had 
the lowest prediction error. We identified all of the 786 SAM selected genes that 
had the lowest prediction error of 5.4% after PAM and LOCV analysis. The resulting 
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subtype-specific markers (CRCassigner) are listed in Supplementary Table 1b. 
With this the overall description of the computational methods and analysis used in 
this study to identify gene expression subtypes has been completed.  

 
Reason for choosing five over three CRC subtypes. Although the cophenetic 
coefficient score (greater than 0.99) from the NMF consensus clustering of the merged 
core CRC data set is highest for the cluster k=3 (three subtypes), we chose k=5 (five 
subtypes, Supplementary Fig. 1b). As illustrated in Supplementary Fig. 1e for k=3, 
the subtype 1 and subtype 2 in the heatmap show heterogeneity in gene expression 
patterns as revealed by subtype-specific signatures 1A, 1B, 2A and 2B in the side bars. 
In addition, using all the three different SD cut-offs, we found consistent support for 3 to 
5 subtypes (Supplementary Fig. 1c). This demonstrates that the consensus support for 
3 to 5 clusters is fairly insensitive to the SD threshold across the range of SD thresholds 
flanking SD=0.8. Taken together with 3 subtypes, these distinct signatures suggest a 
total of 5 CRC subtypes, and this is similar to that discussed elsewhere in Brunet, et 
al11. This decision has been validated by the subsequent analysis documenting clear 
differences amongst the 5 subtypes. 
 
Association of CRC subtypes to colon crypt top/base using NTP. To associate 
CRC subtypes to colon crypt top/base, we used a previously published gene signature16 
of the colon crypt base (see Fig. 2a) together with NTP17. The analysis confirmed that 
majority of the samples from the NMF-identified stem-like subtype were associated with 
the crypt base signature. Hoshida et al.17 proposed the NTP method as a way of 
associating individual samples to known gene signatures even if the published gene 
signature was derived from data acquired from a different gene expression platform. 
This is accomplished by splitting the up- and down-regulated signature genes into two 
groups to form a dichotomized gene expression template. The similarity of a sample’s 
gene expression profile to the template is computed using a nearest neighbor approach. 
By random sub-sampling the gene space, NTP estimates a null distribution of similarity 
coefficients. Then the similarity coefficient obtained using the published gene signature 
can be compared to the null distribution so as to compute a p-value. The same 
approach was followed for the association of CRC subtypes to Wnt signaling (Fig. 2a) 
and FOLFIRI response (Fig. 4b,c) using specific signatures as described in the main 
text.  
 
Statistics for association of colon-crypt top/base to CRC subtypes. After 
performing the NTP algorithm17 based prediction for association of colon-crypt top/base 
to each sample using a published gene signature that discriminates between the normal 
colon crypt top and the normal crypt base16, we observed statistically significant (only 
for samples with FDR<0.2) associations as reported in the main text (Fig. 2a). Here, we 
are reporting the statistics for all the samples irrespective of the FDR cut-off. We 
observed that 55% (n=77) of the stem-like subtype is associated with the crypt base 
whereas 33% (n=105) of TA, 43% (n=63) of goblet-like and 75% (n=64) of enterocyte 
subtypes are associated with the crypt top. On the other hand, we observed that more 
than 80% (n=78) of the inflammatory subtypes have no significant association with 
either the crypt base or top.  
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Validation of subtypes in additional data sets. In order to validate the five subtypes 
in additional data sets, including TCGA CRC data set, we mapped the SAM and PAM 
genes specific to each subtype onto each of the preprocessed data sets (RMA in the 
case of Affymetrix arrays and directly from authors in case of other microarray 
platforms). Later, we normalized for N(0,1) followed by consensus-based NMF analysis 
to identify the number of classes. We used metagenes (defined above) to assign 
subtype identity to each cluster defined by NMF using additional data sets as described 
in our previous publication4. Furthermore, a heatmap was generated using NMF class 
and CRCassigner-786 genes. The data sets, their processed information and 
classification results for each data set have been provided in Supplementary Fig. 3 
and Supplementary Table 2.  
 
Association of subtypes with TCGA subtypes and BRAF-mutant-like signature. 
We have compared our five subtypes with the three CRC gene expression subtypes 
recently reported by the TCGA18. We found that only 17% (171 out of 1020) of the 
subtype-defining signature genes overlap between the two studies. Indeed, when we 
audited the underlying expression data from the TCGA-subtyped tumors for the 171 
overlapping genes using NMF analysis, we found evidence for our subtypes within their 
subtypes, and clearly demonstrate that each of the TCGA CRC subtypes can be further 
refined and subdivided (Supplementary Fig. 3k,l). In our view an explanation for 
subdivision of TCGA subtypes into our subtypes lies in the different methodologies 
employed. We identified our subtypes using algorithms (NMF, SAM and PAM, as 
described in Supplementary Fig. 1a) that were not employed in the TCGA CRC study. 
Moreover, the TCGA subtypes of CRC were not delineated with functional and 
therapeutic parameters, in contrast to their incorporation into our experimental design.  
 
In addition, we also compared our CRC classification with a recent report of a “BRAF-
mutant-like” gene signature19 in CRC with poor prognosis using NTP algorithm. We 
found that the BRAF-mutant-like signature incorporates tumors from several of our 
subtypes, being significantly associated (p<0.05, chi-square test) with the goblet-like, 
inflammatory and stem-like subtypes, while the complimentary BRAF and KRAS double 
wild type signature is associated with the enterocyte and TA subtypes (Supplementary 
Fig. 6d).  
 
Certainly the TCGA and the BRAF-mutant-like subtype classifiers may be informative 
about certain facets of CRC tumor biology. There is, however, reason to suggest that 
the distinctive subtype classification system we describe will have particular utility in 
guiding treatment decisions. The potential for therapeutic applicability of our subtype 
classification is based on the features of each subtype, which are distinctive in their 
putative cells-of-origin, in DFS, and in response to chemo- and targeted therapies.  
 
Combination of CRC cell line data sets. We used DWD10 to merge gene expression 
profile data sets for CRC cell lines from two different sources20,21 for the purpose of 
increasing the total number of CRC cell lines. Prior to our analysis 14 repeated cell lines 
between the two data sets were removed. Overall, we obtained data for 51 unique CRC 
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cell lines. The merged cell lines data set was later merged again with the CRC core 
data sets (after selecting silhouette positive samples from the CRC core data sets) 
using the DWD10 based method. The merging of cell lines and core data sets was 
performed after selecting CRCassigner genes (786 SAM and PAM selected genes) 
from each data set. Next, we performed NMF based consensus clustering of the 
merged CRC cell lines and core data sets, seeking to identify subtypes amongst the cell 
lines (Supplementary Fig. 4a,b). We identified maximum cophentic coefficients at k=3 
and k=5. We again selected k=5 for the reason explained above under “Reason for 
choosing five over three CRC subtypes”. We determined that this collection of CRC cell 
lines represented only 4 subtypes: there was no single cell line that belonged to the 
enterocyte subtype. A few of the duplicate cell lines from different sources showed 
different subtype identity (probably due to variation in cell culture between different 
laboratories) after NMF consensus clustering. We tested the subtype of the SW620 cell 
line using RT-PCR analysis for markers of differentiation and stemness, since this cell 
line was used for various experiments. We found that SW620 had higher expression of 
stem cell markers and lower expression of differentiated marker, confirming its stem-like 
subtype identity (Supplementary Fig. 4c). 
 
Intra- and inter-tumoral heterogeneity in CRC. Although intra-tumoral heterogeneity 
exists in CRC22, our analyses using additional independent data sets containing 
samples from both microdissected and whole tumors, and from tumor RNAs profiled on 
different microarray platforms (Supplementary Fig. 3 and Supplementary Table 2), 
consistently identified samples as having a particular CRC subtype. This result, in 
addition to the distinctive gene expression patterns in the five CRC subtypes reflective 
of different cell types in the colon-crypt (Supplementary Fig. 2a-f), suggests that 
individual tumors are dominated by cancer cells with characteristics of a particular 
subtype. This is similar to what has been suggested in breast cancer23, where subtypes 
are routinely identified despite possible intra-tumoral heterogeneity.  
 
Clinical/histopathologic analysis for the GSE14333 data set: We examined the 
relationship between DFS and other histopathological information such as Dukes’ stage, 
age, location of tumors (left or right of colon or rectum) and adjuvant treatment in the 
GSE1433310 data set; see Supplementary Table 3. We censored those patients who 
were alive without tumor recurrence or dead at last contact. In this data set, the median 
follow up among patients without events (tumor recurrence) was 45.1 months. As 
explained in the main text, we first evaluated DFS for all the samples irrespective of the 
type of the treatment (adjuvant chemotherapy or chemoradiotherapy), the specific 
components consisting the treatment (standard chemotherapy of either single agent 5-
fluouracil (5-FU) or capecitabine or a combination of 5-FU and oxaliplatin) or Dukes’ 
stage (for analysis, we considered Dukes’ stage A and B patients with lymph node 
negativity together whereas Dukes’ stage C patients with lymph node positivity 
separately). Dukes’ stage is known to correlate with CRC survival24. We did not find a 
significant association between subtype and DFS (p=0.12; log-rank test; 
Supplementary Fig. 5b and Supplementary Table 3) in all the patient samples 
irrespective of stage or treatment. As previously known24, we also observed in the 
current set of samples that treatment (p=0.03; log-rank test) and Dukes’ stage 
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(p=0.0009; log-rank test) were significantly associated with DFS. Similarly, we also 
observed that treatment was significantly associated with Dukes’ stage (p=1.98x10-14, 
Fisher’s exact test). Since treatment and Dukes’ stage were associated with DFS, we 
examined whether subtype was associated with DFS within subsets defined by these 
variables. In untreated patients, there was a significant association between subtypes 
and DFS (p=0.0003; n=120; log-rank test), with stem-like subtype tumors having the 
shortest DFS, and inflammatory and enterocyte subtypes having intermediate DFS (Fig. 
1e). On the other hand, there was no significant association between subtype and DFS 
(p=0.9; n=77; log-rank test) in treated patients (Supplementary Fig. 5c). Similarly, we 
did not find significant association between subtype and DFS in Dukes’ stages A and B 
(p=0.13; n=119; log-rank test) or in Dukes’ stage C (p=0.7; n=98; log-rank test) patients. 
We also observed that treatment preferentially improved DFS in stem-like subtype 
patients (though not in a statistically significant manner, Supplementary Fig. 5d). This 
is because there is an interaction between subtypes and treatment. Typically, we would 
fit a Cox Propotional Hazard model for DFS that includes subtype, treatment, and their 
interaction. But due to the low number of events (n=43), this model did not converge. 
When we fit a Cox model of DFS on subtype alone for the untreated patients, the model 
again did not converge. Hence we cannot use the Cox model in our analysis. As 
mentioned earlier, we used a log-rank test to find the association between DFS and 
subtype in the untreated patients. To determine if this association changed in the 
presence of Dukes' stage in the untreated patients, we used a stratified log rank test, 
with Dukes' stage used as the stratification variable. In this model, the association was 
still significant with a p-value of 0.004. As such, subtype is associated with DFS even 
after adjusting for Dukes’ stage in untreated patients. Since there were only 43 events 
of tumor recurrence amongst the treated and untreated samples (and only 15 in the 
stem-like subtype), additional patient samples will be needed to fully elucidate the 
relationships between subtype, treatment and DFS (at present, sufficiently large CRC 
sample microarray data sets annotated for kind of treatment, or none, are unavailable). 
 
Clinical/histopathologic analysis for the Khambata-Ford data set: We identified 
only 3 CRC subtypes (goblet-like, TA and stem-like) in Khambata-Ford data set that had 
liver metastases samples from colorectal cancer patients. Here, we discuss more 
information that we obtained after analyzing the DFS from this data set. 
Supplementary Fig. 7n-o illustrate comparable differential responses to cetuximab 
treatment when restricting the analysis to the TA subtype (p=1.4x10-6; log-rank test; 
n=26; Supplementary Fig. 7n) versus KRAS WT patients (p=1.9x10-6; log-rank test; 
n=39; Supplementary Fig. 7o) using the Khambata-Ford25 data set. For 
Supplementary Figs. 7n-q of these Kaplan-Meier plots, we excluded samples falling 
into the "unknown" subtype, which we suspect to have been contaminated by liver 
metastases, based on comparison to normal liver-specific gene expression signature 
(Fig. 3a). Survival statistics for responders (R), evaluated based on modified WHO 
criteria26, were differentiated from non-responders (NR) using a log-rank test. 
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Supplementary Methods 
 
Processing of microarrays. The processing of microarrays from CEL files was 
performed as described4. Published microarray data were obtained from GEO 
Omnibus27. The robust multiarray average (RMA)9 preprocessing and normalization of 
raw CEL files from Affymetrix GeneChip® arrays were performed using R-based 
Bioconductor28. The patient characteristics for the published microarray data sets were 
obtained from GEO Omnibus using Bioconductor package, GEOquery29.  
 
Graphically illustrating gene expression profiles using hierarchical clustering. 
Median centering of genes and clustering of samples and/or genes from the microarray 
data sets were performed using Gene Cluster 3.030. The clustering results were viewed 
using GenePattern based Hierarchical Clustering Viewer31. 
 
Survival statistics. Kaplan-Meier Survival curves were plotted and log-rank tests were 
performed using GenePattern based Survival Curve and Survival Difference 
programs31. Multivariate Cox Regression analysis was performed using R based 
survival package32. 
 
Patient samples. Tissue microarray (TMA; COC1021; n=120; only 53 of these samples 
were useful for analyses) slides were purchased from Pantomics (Hiddenhausen, 
Germany). RNA from colorectal cancer samples (n=19) was purchased from Origene 
(Rockville, MD, USA). 
 
Cell lines. Colon cancer cell lines were grown in DMEM (Life Technologies, Grand 
Island, NY, USA) plus 10% FBS (Life Technologies) without antibiotics/antimycotics. All 
the cell lines were confirmed to be negative for mycoplamsa by PCR (VenorGeM kit, 
Sigma-Aldrich, St. Louis, MO, USA) prior to use. SW1116 was purchased from LGC 
Standards (France). HT29 cell line was gift from Dr. Renaud A. Du Pasquier (Centre 
Hospitalier Universitaire Vaudois; CHUV, Lausanne, Switzerland), SW480, SW48, 
HCT8, LS174T and SW948 cell lines were gift from Dr. Philippe Depeille (University of 
California at San Francisco, San Francisco, USA) and NCI-H508, LS1034, SW620, 
COLO320, SW1417, HCT116, RKO and DLD1 cell lines Dr. Haoqiang Ying (MD 
Anderson Medical Center, TX, USA).  
 
Clonogenic assay. Single cells (104) were plated in 6-well dishes and treated with 
cetuximab (15.6 µg ml-1) or media alone (untreated control) the following day. Once 
colonies with 30–50 cells were formed, they were counted at 50x power and pictures 
were taken using Leica ICC50 HD microscope (Leica Microsystems, Heerbrugg, 
Switzerland). The experiments were performed in duplicates and in the presence of 
serum. The number of clones from the cetuximab treated cells was normalized to the 
vehicle (media-alone) control.  
 
Gene set enrichment analysis (GSEA). GSEA33 was performed using javaGSEA 
Desktop Application using GenePattern software31.  
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Xenograft Studies 
Subcutaneous injection and drug pre-clinical trials. Swiss male nu/nu mice (5-6 weeks 
old, Charles-Rivers) were implanted with 106 or 2×106 tumor cells mixed with an equal 
volume of MatrigelTM (BD Biosiences) in a total volume of 100 µL on the flank of the 
animal. Mice were followed until tumors reached between 50 and 100 mm3. The 
animals were then randomly assigned to treatment groups. Tumors were measured by 
calipers using the formula: length × (width2)/2. The weight of animals was measured 
twice a week to detect toxicity. Cetuximab (Erbitux, Merck-Serono, Geneva, 
Switzerland) was administered by intraperitoneal (i.p.) injection every 3 days (q3D) at a 
dose of 1 mg/mouse for up to 5 consecutive injections (a modified protocol from Wild et 
al.34). For FOLFIRI treatment (which clinically consists of a combination of 5-FU, 
irinotecan and leukovorin), irinotecan (Actavis, Regensdorf-Zurich, Switzerland) was 
given at 20 mg/kg as a single i.p. injection at day 1. 5-FU (Sigma-Aldrich) was given at 
100 mg/kg as an i.p. dose on days 1 and 2 followed by leucovorin (Sigma-Aldrich) at 40 
mg/kg i.p. dose on days 1 and 2 as described35. Animals were followed until tumors 
reached a maximum of 1000 mm3 in size or upto 35 days depending on the potential of 
the individual cell lines to grow as xenograft tumors. Growth curves and significance 
was defined using Prizm (GraphPad Software, La Jolla, CA, USA) and paired two-tailed 
student t-test, respectively. The cetuximab trials using CR-TA subtype cell line (LS1034) 
and CS-TA subtype cell line (NCI-H508) were repeated twice in our laboratory (we 
report only a representative experiment) and were also repeated at Charité, 
Universitätsmedizin Berlin, Berlin, Germany along with stem-like subtype cell line 
(HCT1116). In addition, we observed that cetuximab and vehicle treated tumors from 
HCT116 did not show significant difference in tumor volume (data not shown). All the 
animal procedures were performed after approval of protocol (authorization number 
2263) and as per guidelines from Experience sur animaux (EXPANIM) – Service de la 
consommation et des Affaires veterinaries (SCAV) in Switzerland and as per 
institutional guidelines from Charité Universitätsmedizin Berlin, Germany and the 
experiments were performed after approval from the Berlin animal research authority 
LAGeSo (registration number G0068/10) in Germany 
 
Orthotopic implantation of CRC cell lines into mice and RNA isolation. NMRI nu/nu mice 
(6-8 week old females) were anesthetized with Ketamine and Xylazin, additionally 
receiving buprenorphin before surgery. The animals were placed on a heated operation 
table. A midline incision was performed and the descending colon was identified. A 
polyethylene catheter was inserted rectally and the descending colon was bedded 
extra-abdominally. To obtain a transplant tumor, human CRC cell lines (2×106 cells per 
site) were injected into the wall of the descending colon. Care was taken not to puncture 
the thin wall and inject the cells into the lumen of the colon. Presence of growing tumors 
at the site of injection was detected by colonoscopy or laparatomy 21 days after the 
initial surgery. The animals were sacrificed and tumors were explanted and immediately 
frozen in liquid nitrogen, and tumor samples were stored at -80°C. The animals were 
cared for per institutional guidelines from Charité Universitätsmedizin Berlin, Germany 
and the experiments were performed after approval from the Berlin animal research 
authority LAGeSo (registration number G0068/10). 
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RNA isolation and qRT-PCR. Snap-frozen tissue samples were embedded in Tissue-
Tek® OCTTM (Sakura, Alphen aan den Rijn, The Netherlands) and cut into 20 µm 
sections. Sections corresponding to 5-10 mg of tissue were collected in a microtube. 
RNA from these samples was prepared using the miRNeasy kit (Qiagen, Hilden, 
Germany) according to the manufacturer's protocol. RNA concentration and purity were 
determined using spectrophotometric measurement at 260 and 280 nm, and integrity of 
the RNA was evaluated using a total RNA nano/microfluidic cartridge on the 
Bioanalyzer 2100 (Agilent, Böblingen, Germany). 
 
Total RNA from cell lines was extracted using miReasy kit (Qiagen, Hombrechtikon, 
Switzerland) and cDNA was generated using Superscript reverse transcriptase (Life 
Technologies, Grand Island, NY, USA). The concentration of cDNA was determined 
(Nanodrop 2000, Thermo Scientific, Asheville, NC, USA) and 25 ng of total cDNA was 
subjected to quantitative PCR using QIAgility (automated PCR setup, Qiagen), 
QuantiTect SYBR Green PCR kit (Qiagen), gene specific primers (Supplementary 
Table 4) and Rotor-Gene Q (Qiagen) real-time PCR machine. A standard curve ranging 
from 60 to 6×106 copies of linearized plasmid containing the target sequence was 
created for each gene. The gene-specific copy number was calculated according to the 
standard curve and normalized to the amount of cDNA (ng) in the reaction. The average 
(mean) copy number per ng of cDNA for each gene was calculated, and each sample 
was mean-centered for that particular gene.  
 
Immunostaining of subtype-specific markers in cell lines. Colon cancer cell lines 
were plated, and allowed to set overnight, on gelatin-coated (0.1% solution in PBS) 
cover slides in 24-well dishes. The following day, the cells were fixed with 4% 
paraformaldehyde in PBS (20 minutes, room temperature) and washed twice. 
Immunofluorescent analysis was performed as described36. Antibody dilutions are as 
follows: MUC2 (1:100, SC7314; Santa Cruz, USA) and KRT20 (1:50, M7019; DAKO, 
USA. Slides were imaged using Olympus BX51 fluorescence microscope and images 
were taken at 400x power.  
 
Immunohistochemistry. IHC for TMA was performed as described37. The following 
antibodies and dilutions were used: anti-MUC2 and anti-Zeb1 (1:100, Santa Cruz 
Biotechnology Inc., Santa Cruz, CA, USA), anti-TFF3 (1:100, R&D Systems, 
Minneapolis, MN, USA) and anti-CFTR (1:750, Abcam, Cambridge, MA, USA). Anti-
mouse/anti-rabbit ImmPRESSTM (Vector Laboratories, Burlingame, CA, USA) or 
horseradish peroxidase (HRP) conjugated goat anti-mouse antibodies (Jackson 
ImmunoResearch Laboratories Inc., Suffolk, UK) were used for visualization. Slides 
were imaged using Nikon Y-THF (Nikon AG, Egg/ZH, Switzerland) microscope and 
images were taken at 200x power.  
 
IHC scoring system. The immunolabeled TMA sections were evaluated by a 
pathologist (B.L.). Each core was assessed semi-quantitatively, using a scoring scale 
based on both the extent and intensity of the stainings. For staining extent, scores 1, 2, 
3, 4 and 5 corresponded to positivity in 1-5%, 6-25%, 26-50%, 51-75% and 76-100% of 
tumor cells, respectively. Scores +, ++ and +++ denoted weak, moderate and strong 
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staining intensities, respectively; undetectable staining was scored 0. Only the intensity 
of the staining was used for subtype identification. Those samples that were missing or 
of low IHC staining quality were removed from the analysis. Out of 120 samples, only 53 
were useful for the analyses. Those samples with intensity +++ for MUC2 and ++ or + 
for other proteins were considered as enterocyte CRC subtype, those with intensity +++ 
for MUC2 and TFF3 and ++ or + for other proteins were considered as globlet-like CRC 
subtype, those with intensity +++ for CFTR and ++ or + for other proteins was 
considered as TA CRC subtype and those with intensity +++ for ZEB1 and ++ or + for 
other proteins was considered as stem-like CRC subtype.  
 
 
Legends 
 
Supplementary Fig. 1. Overview of methodology, consensus clusters and cophenetic 
coefficient plots from NMF for CRC core data sets and subtype determination. (a) 
Summary of the methodology used to identify combined gene expression and drug 
response CRC subtypes. A detailed explanation of the methodology is provided above. 
(b) NMF consensus clustering analysis and cophenetic coefficient for cluster k=2 to k=5 
of a DWD merged CRC core dataset (GSE13294 and GSE1433338,39). Maximum 
cophenetic coefficient occurred for k=3 or k=5. (c) GSE13294 and GSE14333 using 
different SD cutoffs. We filtered the genes using a SD cut-off of 0.8 individually from 
each of the core CRC data set, then merged the data sets using distance weighted 
discrimination (DWD) and performed NMF based consensus clustering on the gene 
sets. We performed similar analyses for SD cut-offs: 0.5 and 1. Using all the three SD 
cut-offs, we found consistent support for 3 to 5 subtypes. This demonstrates that the 
consensus support for 3 to 5 clusters is fairly insensitive to the SD threshold across the 
range of SD thresholds flanking SD=0.8. (d) Cophenetic coefficient plots from NMF 
based clustering of CRC core data sets (GSE13294 and GSE14333) where genes were 
selected with fold change greater than 2 in at least 3 samples followed by DWD based 
merging of data sets and NMF analysis, and found evidence for 3 to 5 subtypes, with 
the highest cophentic coefficient for k=5. (e) Heatmap showing 3 subtypes (k=3) from 
NMF consensus clustering of the CRC core data sets. Subtypes 1 and 2 each have 2 
distinct signatures indicating heterogeneity in these subtypes. For this reason, and in 
accordance with the cophenetic coefficient, we chose 5 subtypes instead of 3 subtypes. 
(f) Silhouette plot for the DWD merged CRC core data sets showing samples from 
different subtypes and those with positive and negative silhouette score.  
 
Supplementary Fig. 2 Mapping the cellular phenotypes of each subtype and RT-PCR 
assays. (a) Goblet specific markers (MUC2 and TFF3) show high median expression 
only in CRC goblet-like subtype; (b) enterocyte markers (CA1, CA2, KRT20, SLC26A3, 
AQP8 and MS4A12) show high median expression only in CRC enterocyte subtype; (c) 
Wnt target genes (SFRP2 and SFRP4), (d) myoepithelial genes (FN1 and TAGLN) and 
(e) epithelial-mesenchymal (EMT) markers (ZEB1, ZEB2, TWIST1 and SNAI2) show 
high median expression only in CRC stem-like subtype; and (f) chemokine and 
interferon-related genes (CXCL9, CXCL10, CXCL11, CXCL13, IFIT3) show high 
median expression only in CRC inflammatory subtype. The gene expression data are 
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presented as the median of median-centered data from DWD merged CRC core 
microarray data sets. (g) qRT-PCR (positive, Pos; negative, neg) that classifies CRC 
patient samples into any of the five gene expression subtypes (see Supplementary 
Methods for the details of the assay). ‘Pos’ indicates positive expression value that is 
above the average (mean) copy number per ng of cDNA for that gene whereas ‘Neg’ 
indicates negative expression value that is below the mean copy number per ng of 
cDNA for that gene.  
 
Supplementary Fig. 3 Subtype validation in additional data sets. (a) NMF consensus 
clustering analysis and cophenetic coefficient for cluster k=2 to k=5 and (b) heatmap 
with top bar representing subtypes for GSE12945 (microdissected tumor samples, 
n=62); (c) and (d) for GSE16125 (Affymetrix Human Exon 1.0 ST array, n=36); (e) and 
(f) for GSE20916 (whole tumor, n=101); (g) and (h) for GSE20842 (Whole tumor, 
Agilent-014850 Whole Human Genome Microarray 4x44k, n=65); (i) and (j) for 
GSE21510 (laser capture microdissection and whole tumor, n=123)37 and (k) and (l) for 
TCGA (whole tumor data set, n=220)12 CRC data sets. (m) Heatmap showing subtypes 
in GSE28722 (n=125) samples and their associated metastasis information. All data are 
presented after CRCassigner genes had been mapped on to the data sets individually. 
More information about each data set is available in Supplementary Table 2. 
 
Supplementary Fig. 4 Subtypes in CRC cell lines and subtype-specific gene 
expression in CRC xenograft tumors. (a) NMF consensus clustering analysis and 
cophenetic coefficient for cluster k=2 to k=5 from combining CRC cell line data sets with 
the core primary tumor data sets; the maximum cophenetic coefficient occurred for k=5. 
However, CRC cell lines representing only 4 of the 5 subtypes were identified; no cell 
line for the enterocyte subtype was found. The cell lines data set is presented after 
CRCassigner genes had been mapped. (b) Heatmap showing CRC subtypes 
represented amongst a set of CRC cell lines as identified by merging core tumor data 
set and cell lines as in Fig. 1b. (c) Quantitative (q)RT-PCR analysis of SW1116 cell line 
using stem cell and differentiated markers. d-e) qRT-PCR analysis of xenograft tumors 
derived from the cell lines HCT116 (stem-like subtype), COLO205 (TA subtype) and 
HT29 (goblet-like subtype) for (d) differentiated and (e) stem cell markers. The 
expression is relative to the house-keeping gene, RPL13A. Error bars represent 
standard deviation (SD; technical triplicates). 
 
Supplementary Fig. 5 DFS comparison of CRC subtypes versus MSI/MSS. Kaplan-
Meier Survival curve depicting differential survival for data set GSE14333, which 
includes (a) untreated patients, (b) both treated (adjuvant chemotherapy or 
chemoradiation therapy) and untreated patients, (c) only treated patients. Kaplan-Meier 
Survival curve depicting differential survival for data set GSE14333, which includes 
treated and untreated patients only from (d) stem-like, (e) goblet-like, (f) TA, (g) 
enterocyte and (h) inflammatory subtypes. (i) Heatmap depicting known MSI or MSS 
status for each of the colorectal tumor subtype samples from the data set GSE13294. (j) 
Predicted MSI status for core data sets (GSE13294 and GSE14333) samples using 
publicly available gene signatures with the NTP algorithm. Predicted MSI status with 
FDR<0.2 or no FDR cutoff are shown. (k) Kaplan-Meier Survival curve depicting 



Sadanandam, et al.  Supplementary Information  

	   14	  

differential DFS for samples from data set GSE14333 that were predicted to be MSI or 
MSS. 
 
Supplementary Fig. 6 Gene enrichment analysis and differential Wnt target gene 
expression in two different sub-populations of TA subtype tumor samples, association of 
subtypes with BRAF-mutant-like signature. (a) Heatmap showing the association of 
published stem cell signatures – the mRNA stem cell signature and intestinal stem cell 
(ISC) signature - with CRC subtypes. (b) gene set enrichment analysis (GSEA) analysis 
showing enrichment of published stem cell signatures and other pathways. (c) Bar 
graph showing median of median centered gene expression of the Wnt signaling targets 
LGR5 and ASCL2 in the core CRC microarray data for TA subtype tumors that are 
either predicted to be crypt top- or base-like. (d) Heatmap showing association of 
BRAF-mutant signature40 with CRC subtypes (BRAF-mut indicate BRAF-mutant-like 
and WT2 – BRAF and KRAS double wild type).  
 
Supplementary Fig. 7 Cetuximab response and progression-free survival (PFS) in 
subtype-specific CRC tumors and cetuximab response for cell lines. (a) NMF consensus 
clustering analysis and cophenetic coefficient for cluster k=2 to k=5 of Khambata-Ford 
data set. The data set is presented after PAM colorectal subtype-specific genes had 
been mapped. (b,c) Cetuximab response in cell lines from different CRC subtypes (b) 
proliferation assay (3.9 to 250 µg mL-1 of cetuximab) and (c) clonogenic assay (15.6 µg 
mL-1 of cetuximab). Data were normalized to vehicle-treatment (images were taken at 
50x power). (d) Differential expression of AREG and EREG gene predictors between 
CR-TA and CS-TA, as measured by qRT-PCR analysis (data from Khambata-Ford, et 
al25). (e) qRT-PCR data showing fold change in FLNA expression. Gene expression 
was normalized to the house-keeping gene, RPL13A. The NCI-H508 is presented as a 
control. Receiver operating curve analysis for FLNA as a marker for cetuximab 
response (f) within TA samples only and (g) all the samples in Khambata-Ford data set. 
Kaplan-Meier Survival curve (Khambata-Ford data set) comparing FLNA expression in 
(h) only TA samples, (i) all samples, (j) KRAS wild-type samples or (k) KRAS mutant 
samples. qRT-PCR (Positive expression value (Pos) represents that above the average 
(mean) copy number per ng of cDNA and negative expression value (Neg) represents 
that below the mean copy number per ng of cDNA for that gene) that classifies (l) CRC 
patient samples into any of the five gene expression subtypes and (m) only TA subtype 
samples from (l) into CR-TA and CS-TA sub-subtypes using cystic fibrosis 
transmembrane conductance regulator (CFTR) and FLNA expression. Kaplan-Meier 
Survival curve for patients (Khambata-Ford data set) that belong to cetuximab 
responders (R) and non-responders (NR) based on: (n) only TA subtype samples; (o) 
only KRAS wild type samples; (p) all samples except those from the TA subtype and 
unknown (liver contamination); and (q) all samples except those that were unknown. 
Responders to cetuximab include those patients with complete or partial response or 
stable disease whereas non-responders include those with progressive disease. A more 
detailed explanation about the survival analysis and the results are available in the 
Supplementary Information.  
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Supplementary Fig. 8 Subtype-specific FOLFIRI response. (a) NMF consensus 
clustering analysis and cophenetic coefficient for cluster k=2 to k=10 from DWD 
combined Del Rio data set (with FOLFIRI response from patients) and the core primary 
tumor data sets; the maximum cophenetic coefficient occurred for k=5. Heatmap 
showing subtypes in (b) Del Rio data set with individual responses of primary CRC 
patients (Del Rio data set, n=21) to FOLFIRI treatment and their association with 
subtypes and (c) DWD combined Del Rio data set (with FOLFIRI response from 
patients) and the core primary tumor data sets. Association of response to FOLFIRI in 
individual patient samples from the data sets (d) DWD combined GSE14333 and 
GSE13294, (e) only GSE14333 or (f) only GSE13294 by applying specific signatures 
using the NTP algorithm. 
 
Supplementary Table 1. Results from SAM and PAM analysis, the list of genes 
associated with each subtype and qRT-PCR and IHC assays.  
 
Supplementary Table 2. Summary of gene expression profile data sets used. Subtype 
identity for each sample from all the data sets used including the cell lines and their 
associations with different gene signatures. The information regarding GEO Omnibus 
ID, the nature of samples, processing methods and the PubMed reference numbers are 
provided.  
 
Supplementary Table 3. Clinical/histopathological, subtype and statistical information 
for GSE14333 samples.  
 
Supplementary Table 4. Khambata-Ford data set liver genes and PCR primers. List of 
genes from “Unknown” subtype of Khambata-Ford data set that we identified to contain 
the liver-specific genes. List of primers used and their sequence and annealing 
temperatures.  
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